カブクコネクト

断面の計算

断面とは、物体を仮想切断した時にできる面です。

 

断面の例

 

断面積:断面の面積です。

断面係数:部材の曲げモーメントに対する強さを表す数値です。

断面2次モーメント:部材の曲げモーメントに対する変形し難さを表す数値です。

 

計算方法表

断面重心位置断面積断面係数断面2次モーメント
e【mm】A【\(mm^2\)】Z【\(mm^3\)】i【\(mm^4\)】
\[\frac {H}{2}\]\[H^2\]\[\frac {H^3}{6}\]\[\frac {H^4}{12}\]
\[\frac {H}{2}\]\[H^2-h^2\]\[\frac {1}{6} × \frac {H^4-h^4}{H}\]\[\frac {H^4-h^4}{12}\]
\[\frac {H}{2}\]\[H^2-(\frac {πd^2}{4})\]\[\scriptsize \frac {1}{6H}×(H^4-\frac {3π}{16}d^4)\]\[\scriptsize \frac {1}{12}×(H^4-\frac {3π}{16}d^4)\]
\[\frac {H}{2}\]\[BH\]\[\frac {BH^2}{6}\]\[\frac {BH^3}{12}\]
\[\frac {H}{2}\]\[HB-hb\]\[\scriptsize \frac {1}{6H}×(BH^3-bh^3)\]\[\scriptsize \frac {1}{12}×(BH^3-bh^3)\]
\[\frac {H}{2}\]\[B(H-h)\]\[\scriptsize \frac {B}{6H}×(H^3-h^3)\]\[\scriptsize \frac {B}{12}×(H^3-h^3)\]
\[\frac{H\sqrt{2}}{2}\]\[H^2\]\[0.1179H^3\]
\[(\frac{\sqrt{12}}{2}×H^3)\]
\[\frac {H^4}{12}\]
\[\frac {H}{2}×\sqrt{2}\]\[H^2-h^2\]\[\scriptsize 0.1179×(\frac{H^4-h^4}{H})\]
\[\scriptsize (\frac{H^4-h^4}{12H}×\sqrt{2})\]
\[\scriptsize \frac {H^4-h^4}{12}\]
\[\frac {D}{2}\]

\[\frac {πD^2}{4}\]

\[πR^2\]

\[\frac {πD^3}{32}\]

\[(\frac {πR^3}{4})\]

\[\frac {πD^3}{64}\]

\[(\frac {πR^4}{4})\]

\[\frac {D}{2}\]\[\frac {π}{4}×(D^2-d^2)\]

\[\scriptsize \frac {π}{32}×(\frac {D^4-d^4}{D})\]

\[\scriptsize {\frac {π}{4}×(\frac {R^4-r^4}{R})}\]

\[\scriptsize \frac {π}{64}×(D^4-d^4)\]

\[\scriptsize {\frac {π}{4}×(R^4-r^4)}\]

\[\frac {2H}{3}\]\[\frac {BH}{2}\]\[\frac {BH^2}{24}\]\[\frac {BH^3}{36}\]

\[\scriptsize e1=\frac {(3B_1+2B_2)}{(2B_1+B_2)}×\frac {H}{3}\]

\[\scriptsize e2=H-e1\]

\[\scriptsize (2B_1+B_2)×\frac{H}{2}\]\[\scriptsize \frac{{6B_1}^2+6B_1B_2+{B_2}^2}{12×(3B_1+2B_2)}×H^2\]\[\scriptsize \frac{({6B_1}^2+6B_1B_2+{B_2}^2)}{36×(2B_1+2B_2)}×H^2\]
\[0.866a\]
\[(\frac{\sqrt{3}}{2}×a)\]
\[2.598a^2\]
\[(\frac{3\sqrt{3}}{2}×a^2)\]
\[\frac{5}{8}×a^3\]\[0.5413a^4\]
\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[a\]\[2.598a^2\]
\[(\frac{3\sqrt{3}}{2}×a^2)\]
\[0.5413a^3\]
\[(\frac{5\sqrt{3}}{16}×a^3)\]
\[0.5413a^4\]
\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[0.924a\]\[2.828a^2\]0.6906\[0.5413a^4\]
\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[0.4142a\]
\[\frac{a}{1+\sqrt{2}}\]
\[2.828a^2\]0.10950.0547
e1=0.2234r
e2=0.7766r
\[r^2(1-\frac{π}{4})\]\[0.00966r^3\]
\[(\frac{r^4}{e2}×0.0075)\]
\[0.0075r^4\]
aπBa\[\frac{π}{4}Ba^3\]\[\frac{π}{4}Ba^2\]

\[e1=0.4244r\]

\[e2=0.5756r\]

\[\frac{πr^2}{2}\]\[z1=0.2587r^3\]
\[z2=0.1908r^3\]
\[(\frac{π}{8}-\frac{8}{9π})×r^4\]
\[e1=0.4244r\]
\[e2=0.5756r\]
\[\frac{πr^2}{4}\]\[z1=0.1296r^3\]
\[z2=0.0956r^3\]
\[0.055r^4\]
\[\frac{H}{2}\]\[2v(H-D)+\frac{πd^2}{4}\]\[\scriptsize \frac{1}{12}×{\frac{3π}{16}D^4\]
\[\scriptsize +v(H^3-D^3)\]

\[\scriptsize +v^3(H-D)}\]
\[\scriptsize \frac{1}{6H}×{\frac{3π}{16}D^4\]
\[\scriptsize +v(H^3-D^3)\]

\[\scriptsize +v^3(H-D)}\]
\[\frac{H}{2}\]\[\scriptsize 2v(H-d)+\frac{π(D^2-d^2)}{4}\]\[\frac{2×H}{3}\]\[\frac{2×H}{3}\]
\[\frac{H}{2}\]\[HB-hb\]\[\frac{BH^3-bh^3}{6H}\]\[\frac{BH^3-bh^3}{12}\]
\[e1=H-e1\]
\[\scriptsize e2=\frac{(vH^2+bt^2)}{(vH+bt)}×\frac{1}{2}\]
\[\scriptsize HB-b(e2+h)\]\[z1=\frac{i}{e1}\]
\[z2=\frac{i}{e2}\]
\[\scriptsize \frac{Be1^2-bh^3+ve2^3}{3}\]
\[\frac{H}{2}\]\[HB+hb\]\[\frac{BH^3+bh^3}{6H}\]\[\frac{BH^3+bh^3}{12}\]
\[\frac{H}{2}\]\[HB-hb\]\[\frac{BH^3-bh^3}{6H}\]\[\frac{BH^3-bh^3}{12}\]
\[e1=H-e1\]
\[\scriptsize e2=\frac{vH^2-bt^2}{vH+bt}×\frac{1}{2}\]
\[HB-b(e2+h)\]\[z1=\frac{i}{e1}\]
\[z2=\frac{i}{e2}\]
\[\scriptsize \frac{Be1^2-bh^3+ve2^3}{3}\]